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Abstract. Using the constrained search and Legendre-transform formalisms, one can derive “generalized” 
density-functional theories, in which the fundamental variable is either the electron pair density or the 
second-order reduced density matrix. In both approaches, the N-representability problem is solved by the 
functional, and the variational principle is with respect to all pair densities (density matrices) that are 
nonnegative and appropriately normalized. The Legendre-transform formulation provides a lower bound 
on the constrained-search functional. Noting that experience in density-functional and density-matrix 
theories suggests that it is easier to approximate functionals than it is to approximate the set of N-
representable densities sheds some light on the significance of this work. 
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1. Historical perspective 

Among the most fundamental equations in all of 
chemistry is the variational principle for the ground 
state energy, which states that if we minimize the 
expectation value of the N-electron Hamiltonian,  
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with respect to all antisymmetric and normalized 
wave functions, we obtain the ground state energy 
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This equation is the foundation for most of quantum 
chemistry. Unfortunately, because the wave function 
depends on 3N spatial coordinates, methods based 
directly on (2) tend to suffer from the curse of di-
mension – computational costs grow exponentially 
with increasing numbers of electrons.  

 This motivates work that uses simpler quantities 
than the many-electron wave function to describe 
molecular systems. Arguably the first work along 
these lines was that of Thomas and Fermi, way back 
in the 1920’s.1,2 Work on simpler alternatives to the 
Schrödinger equation received sustained attention 
starting in the mid-1950’s, when work on the second-
order reduced density matrix3,4 began to appear. For 
an ensemble composed of the wave functions {Ψi} 
with weights that satisfy, 
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the N-electron density matrix is defined as  
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and the second-order reduced density matrix is, in 
turn, defined as 
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The second-order reduced density matrix is interest-
ing because we can express the exact electronic en-
ergy in terms of the second-order reduced density 
matrix. Specifically,  
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where the integration is with respect to all the argu-
ments of the density matrix. Equation (6) is often 
written in terms of the reduced Hamiltonian operator, 
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as  

 , 2 2 2
ˆ[ ] Tr[ ],v NE KΓ = Γ  (8) 

 
where the trace notation means “evaluate 2 2

ˆ ,K Γ  re-
move the primes, and then integrate with respect to 
the unprimed variables.”  
 Research into density-matrix theories slowed 
(though there has been a recent resurgence) when it 
was observed that the naï ve variational procedure – 
minimize (8) with respect to all positive-semide-
finite Γ2 that are appropriate normalized – gives re-
sults that are far lower than the true ground state 
energy. The problem is that not every positive-semi-
definite Γ2 satisfying the normalization constraint  
 

 2Tr[ ] ( 1),N NΓ = −  (9) 

 
corresponds to an ensemble of antisymmetric and 
normalized wave functions. That is, some “reason-
able” density matrices cannot be written in the form 

of (5). Since the variational principle for the wave 
function (or the N-electron density matrix) is restri-
cted to antisymmetric and normalized wave func-
tions, the variational principle for Γ2 must be 
restricted to those density matrices that can be ex-
pressed in the form of (5). Such Γ2 are said to be N-
representable.5,6 (More precisely, such Γ2 are said to 
be ensemble N-representable. Pure-state N-represen-
table Γ2 are expressed in the form of (5), but only 
one of the weighting factors in (4) is nonzero.) 
 The true ground-state energy, then, can be written 
as 
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where N(N) denotes the set of N-representable density 
matrices. Though the exact form of the N-represent-
ability constraints is known,6 it is not computation-
ally useful. Computational treatments based on 
approximate implementations of (10) are extremely 
demanding and, as of this writing, usually are not 
competitive with other methods of similar computa-
tional cost.7–10 In approaches based on Γ2, we trade 
the daunting problem of representing a high-dimen-
sional wave function with the daunting problem of 
characterizing the set of N-representable Γ2. (How-
ever, in contrast to density-functional theory, the exact 
energy functional for Γ2 is known in a computation-
ally practical form, (8).) 
 The next milestone along this chain of research 
appeared in the mid-1960’s, when Hohenberg and 
Kohn11 showed that the ground state electron density,  
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determines every property of an electronic system. 
Specifically, the Hohenberg–Kohn functional is11,12 
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That is, one can minimize the energy functional,  

Γ2 ∈ N(N) 
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 , [ ] [ ] ( ) ( )d ,HK HK
v NE F vρ ρ ρ≡ + ∫ r r r  (14) 

 
subject to the constraint that the electron density is 
positive and appropriately normalized. There is no 
N-representability problem here, because every elec-
tron density that is nonnegative and normalized is N-
representable.13,14 There is a well-known problem 
with the variational principle, however, which is that 
FHK[ρ] is only defined for electron densities that are 
the ground state for some local external potential 
(cf. (12)). This is termed the v-representability prob-
lem.  
 Solutions to the v-representability problem can be 
achieved by constrained search,15  
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or the generalized Legendre transform,16  
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Equation (15) indicates that Fconstr.srch[ρ] is defined 
by minimizing the expectation value of the sum of 
the kinetic energy and electron-electron repulsion 
energy operators with respect to all antisymmetric 
and normalized wave functions that are associated 
with the electron density of interest. Equation (16) 
indicates that you find the maximum (the supremum 
is a mathematical generalization of the concept of a 
maximum) of the difference of the total energy and 
the electron-external potential energy over all possible 
choices of the external potential. One has that17,18  
 

 . .[ ] [ ]Legendre constr srchF Fρ ρ≤  (17) 

 
with equality only when the density is pure-state v-
representable (in which case both functions equal 
FHK[ρ]). 
 One reason density-functional theory is so useful 
is because there is no N-representability problem. 
Neither do we have the problem of representing a 
function that depends on a large number of variables: 
the electron density depends on only three coordi-
nates. Unlike theories based on the wave function or 
the second-order reduced density matrix, however, 
the energy functional is not known in a practical form 
for computational applications. Density-functional 

theory is applied much more widely than theories 
based on Γ2, suggesting that the problem of approxi-
mating energy functionals is “easier” than approxi-
mately accounting for N-representability. 
 Moving forward another decade, Gilbert,13 Don-
nelly and Parr,19,20 and Levy15 laid the foundations for 
theories based on the first-order reduced density 
matrix,  

 1 1 1 2 1 2 1 2 2

1
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It is important to note that the ensemble-N-repre-
sentability conditions for the Γ1 are known (though 
the pure-state conditions do not seem to be known).5,6 
Unlike the electron density, the kinetic energy can 
be computed exactly from the first-order reduced 
density matrix. Like the electron density, however, 
the electron-electron repulsion energy needs to be 
approximated. The exact electron-electron repulsion 
energy functional can be constructed by constrained 
search15 or Legendre transform16 and, again,  

 .
1 1[ ] [ ].Legendre constr srch

ee eeV VΓ ≤ Γ  (19) 

Though neither of these exact functionals takes a 
computationally practical form, the properties of the 
exact functionals are useful for constraining the 
form of the approximate functionals used in practi-
cal applications. 
 Recent years have seen a resurgence of interest in 
theories based on the first-order reduced density ma-
trix and some very promising numerical results have 
been obtained.21–36 Again we have traded the prob-
lems of high-dimensionality (wave-function theory) 
and the N-representability problem (Γ2-theory) for 
the problem of approximating a functional and, again, 
the result seems to be a computationally tractable 
theory. 
 In the mid-1990’s, Ziesche completed this family 
of theories by formulating the energy as a functional 
of the electron pair density,37,38  

 2 1 2 2 1 2 1 2( , ) ( , ; , )ρ = Γr r r r r r . (20) 

(Prescient early work was performed by Weinhold, 
Wilson, and Davidson in the late 1960’s.39–41) For 
the pair density, the electron-electron repulsion en-
ergy functional is known exactly in explicit form  
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Table 1. Summary of different computational approaches to the molecular electronic structure problem. 

Where a single fundamental variable has more than one entry, this indicates the existence of two alternative ap-
proaches. Shaded entries constitute contributions from this work. The entries are ordered according to the chronology 
in the introductory section of the paper. 

 Fundamental   N-representability Functional approximation 
Type of theory  variable Dimensionality problem? problem? 
 

Wave-function 1( ,... )NΨ r r  3N No No 
Density-matrix 2 1 2 1 2( , ; , )′ ′Γ r r r r  12 Yes No 

   No Yes 

Density-functional ρ(r) 3 No Yes 

Natural-orbital 1 1 1( , )′Γ r r  6 No Yes 

Pair-density functional 2 1 2( , )ρ r r  6 Yes Yes 

   No Yes 

 
 
but no explicit exact expression for the kinetic energy 
functional is known.37,42,43 Worse still, ρ2(r1, r2) suf-
fers from the N-representability problem too!44–46 
Thus, while the “curse of dimension” that afflicts 
computational methods based on the wave function 
has been avoided, theories based on the electron pair 
density suffer from both an N-representability prob-
lem and the functional approximation problem. This 
perhaps explains why, despite great current interest 
in the electron pair density,42,54 no variational calcu-
lations using the electron pair density have been re-
ported. 
 The goal of this paper is to show that matters are 
not quite so bad as this. We can “combine” the prob-
lem of the unknown kinetic energy functional, T[ρ2], 
with the N-representability problem by defining 
functionals, T[ρ2], that are “big enough” for non-N-
representable electron pair densities to ensure that 
minimizing the energy functional  
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with respect to all nonnegative and appropriately 
normalized electron pair densities gives the correct 
answer, i.e. 

 
( )2

1 1 2

. .
, 2 2

1
( , ) 0

min ( [ ] [ ] ( ) ( )d ).g s
v N ee

N N

E T V v
ρ
ρ

ρ ρ ρ
〈 〉= −

≥

= + + ∫
r r

r r r  

 (23) 

Unsurprisingly, this goal can be achieved using the 
Legendre-transform (§2.1) or constrained-search 

(§2.2) formulation. (As might be expected, the Leg-
endre transform is a lower bound on the constrained-
search functional.) Section 3 sketches how our results 
can be extended to the second-order reduced density 
matrix. Our intent, here, is to give an overview of 
the state of the theory, stressing the links between 
different approaches. (See table 1 for a graphical 
representation.) Except as required to establish the 
plausibility of our results, the proofs (none of which 
are very hard) are omitted. More detailed analyses 
will be published separately.43,55 

2. Conquering the N-representability problem  
for the electron pair density 

2.1 Legendre-transform approach 

The desired variational principle for the energy is 
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This is equivalent to desiring that 
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for every external potential v(r), with the equality 
only holding when ρ2(r1, r2) is a ground state for this 
external potential. To achieve this, we maximize the 
right-hand side of (25) with respect to the external 
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potential. (However, due to mathematical considera-
tions, we need to actually take the supremum.) Our 
Legendre transform function is then  
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Here, ρ[ρ2; r] is the electron density associated with 
the pair density of interest. 
 By construction, 2[ ]LegendreT ρ  satisfies the varia-
tional principal for any nonnegative and normalized 
ρ2(r1, r2). Comparing (16) and (26), it is clear that 

2[ ]LegendreT ρ = 2 2[ [ ]] [ ].Legendre
eeF Vρ ρ ρ−  A constrai-

ned-search analogue is T[ρ2] = Fconstr.srch[ρ[ρ2]] – 
Vee[ρ2]. Further, Vee[Γ1] = F[ρ[Γ1]] – T[Γ1] is the 
corresponding electron-electron repulsion energy 
functional of the first-order reduced density matrix, 

1 1( , ).′Γ r r  
 Every other functional that satisfies the varia-
tional principle, (24), will be greater than or equal to 

2[ ]LegendreT ρ . That is, among all functionals that do 
not suffer from the N-representability problem, 

2[ ]LegendreT ρ  is the “smallest possible” exact func-
tional. To derive this, merely suppose that 2[ ]T ρ<  is 
smaller than 2[ ]LegendreT ρ  for some pair density, 

2 1 2( , )ρ< r r . Using the definition, (26), there exists 
some external potential, ( )v< r , such that  
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which violates the variational principle.  

2.2 A constrained-search approach 

Define  
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where the minimization runs over all normalized an-
tisymmetric wave functions that are associated with 
the electron density, 
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The requirement that the electron density be N-
representable forces the electron pair density to be 
nonnegative and normalized to N(N–1), but nothing 
else is required. Note that W[ρ2] is greater than or 
equal to zero for non-N-representable pair densities 
and equal to zero for pair densities that are pure-
state N-representable. 
 A wave function that minimizes (29) is denoted 
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If more than one wave function minimizes (29), 
choose the Ψ whose pair density resembles ρ2(r1, r2) 
most closely. The wave function in (31) is obviously 
associated with an N-representable pair density, de-
noted  
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Now, we define  
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The coefficient, 
2
,cρ  of the last term in (33) should 

be chosen to maintain consistency of units. 
2

cρ  can 
be any positive real number, since the last term, like 
W[ρ2], is identically zero for N-representable pair 
densities.56 When ρ2(r1, r2) is N-representable, (33) 
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becomes the direct analogue37 of the density-functio-
nal theory constrained-search expression. The wave 
function that minimizes (33) is denoted Ψconst.srch[ρ2]; 
note that the pair density of Ψconst.srch.[ρ2] is ρ2[Ψmin] 
whenever ρ2(r1, r2) is not N-representable. When 
ρ2(r1, r2) is not N-representable, then 
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Thus, the “penalty functional” in (29) is large 
enough to ensure that the pair density that minimizes 
the energy is N-representable. Using Tconstr.srch[ρ2] as 
the energy functional in (23), it is clear that the 
ground state energy and pair density are determined 
by minimizing 
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with respect to all pair densities that are positive and 
appropriately normalized. 
 Based on the discussion in the previous section, it 
is apparent that  
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and that both functionals are equal to the Hohen-
berg–Kohn-type functional  
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for electron pair densities that are v-representable. 
(That is, . .

2 2 2[ ] [ ] [ ]Legendre constr srch HKT T Tρ ρ ρ= =  
whenever there exists a v(r) for which ρ2(r1, r2) is 
the ground state electron pair density.) 
 In density-functional theory, the constrained-
search for the wave function can be replaced by the 
constrained-search for the ensemble57 
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It is interesting to note that FLegendre[ρ] = Fensemble[ρ].16 
One can also generalize the constrained search for 
the electron pair density to ensembles. If one does so, 
then the constrained-search and Legendre-transform 
functionals are identical for ensemble-v-repre-
sentable density matrices. 
 The key result of this section should be reiterated. 
Minimizing the energy functional  
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with respect to nonnegative and normalized electron 
pair densities gives the correct ground state energy, 
if one uses either (26) or (33) as the definition of the 
kinetic energy functional. This is analogous to the 
situation in density functional theory: the N-
representability problem has been replaced with the 
problem of constructing accurate approximations to 
the specified functionals. 

3. Conquering the N-representability problem 
for the second-order reduced density matrix 

The significance of the results in the previous section 
is that they convert the N-representability problem 
(which seems difficult to address in practical com-
putations) to the problem of functional approxima-
tion (which, as is attested to by the great success of 
density-functional theory and the burgeoning inter-
ested in theories based on the first-order reduced 
matrix, is less problematic in practical computa-
tions). This suggests that it would be useful to re-
place the N-representability problem for the second-
order reduced density-matrix with the problem of 
constructing accurate approximations to some prede-
fined functional. Just as before, there is a Legendre-
transform functional,  
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in terms of which the variational principle may be 
stated  
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For N-representable Γ2, it is clear that QLegendre[Γ2] = 
FLegendre[ρ[[Γ2]] – T[Γ2] – Vee[Γ2] ≤ 0, where ρ[Γ2; r] 
is the electron density associated with the density-
matrix. The equality holds when ρ[Γ2; r] is v-repre-
sentable. Even though QLegendre[Γ2] ≤ 0 for N-represen-
table Γ2, QLegendre[Γ2] will positive for some (and 
perhaps most) non-N-representable density matrices. 
 A constrained-search analogue to (40) is Q[ρ2] = 
Fconstr.srch[ρ[ρ2] – T[Γ2] – Vee[Γ2]. 
 There is another constrained-search approach. 
Denote the sum of the kinetic and electron-electron 
repulsion energies as 
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Next, define the constrained-search functional as 

2 2

. .
2

2

[ ] 1 2 1 2 2 1 2 1 2

[ ]

ˆ ˆ| | | [ ] |
min .

|| ; , ; , ] ( , ; , ) ||

constr srch

ee

Q

T V G

cρΨ→ Γ Γ

Γ

 〈Ψ + Ψ〉 − Γ
≡   ′ ′ ′ ′+ Ψ − Γ r r r r r r r r

 (43) 

In the last term, 2 1 2 1 2[ ; , ; , ]′ ′Γ Ψ r r r r  denotes the den-

sity matrix that corresponds to the wave function Ψ. 
Analogous to the situation in (33) cΓ2

 is a positive 
real number that maintains consistency of units.58 
The minimization in (43) can only be performed if 
ρ[Γ2] is N-representable; this means that Γ2 must be 
an appropriately normalized positive semidefinite 
density matrix. (The requirement that the density 
matrix be positive semidefinite may be simply  
imposed by adopting the ansatz 2 1 2 1 2( , ; , )′ ′Γ =r r r r  

1 2 1 2 1 2 1 2 1 2
*( ( , ; , )) ( , ; , )d d .A A ′ ′∫∫ r r x x x x r r x x ) 

 Defining 

 . .
2 2 2[ ] [ ] [ ],constr srchF G QΓ ≡ Γ + Γ  (44) 

it follows, by the same argument used in §2.2, that 
the ground state energy and density matrix can be 
found using the variational principle: 
 

 2

2

. .
, 2 2

.
2 2 2

min ( [ ] [ ; ] ( )d )

ˆmin (Tr[ [ ] ] [ ]).

g s
v N

constr srch

E F v

K v Q

ρ
Γ

Γ

= Γ + Γ

= Γ + Γ

∫ r r r

 (45) 

Note that the G component of F does not have to be 
approximated and that . .

2[ ]constr srchQ Γ  is greater than 
or equal to zero. That is, 

 . .0 [ ]constr srchQ 2≤ Γ  (46) 

with equality holding for all pure-state N-repre-
sentable density matrices. 
 Corresponding to (17), (19), and (36), we have that  

 . .[ ] [ ]Legendre constr srchQ Q2 2Γ ≤ Γ  (47) 

with both functionals equal to zero for all v-
representable density matrices. The nonnegativity of 
Qconstr.srch[Γ2] should be useful for constructing ap-
proximations. 

4. Summary 

When solving the Schrödinger equations computa-
tionally, one encounters costs that grow exponen-
tially as the number of electrons increases. This 
curse of dimension can be avoided by considering a 
“reduced” function – e.g., the second-order reduced 
density matrix, the first-order reduced density matrix, 
the electron density, or the electron pair density – to 
be the fundamental descriptor of the chemical system. 
Unfortunately, for the second-order reduced density 
matrix and the electron pair density, the naï ve varia-
tional approach to the electronic structure problem 
does not work because of the N-representability pro-
blem. The difficulty of the N-representability problem 
can be contrasted to the great success in density-func-
tional theory (and the lesser, but still impressive, 
successes in theories based on the first-order density 
matrix), where there is no N-representability problem 
but, instead, one needs to approximate the exact en-
ergy functionals. This motivates the present work, in 
which the N-representability problem is “converted” 
into a functional approximation problem by using 
the Legendre transform and constrained search to 
define exact functionals that are free from the N-
representability problem. In each case, one simply 
minimizes the energy functional ((39) for the elec-
tron pair density; either  (41) or (45) for the second-
order reduced density matrix) with respect to objects 
that are appropriately normalized and positive 
semidefinite. We hope that the present functionals 
will prove as useful for further developments of 
density-matrix and electron-pair-density functional 
theories as their analogues have been in density-
functional theory. 
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